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We study numerically the properties of spin transport and charge transport in a current-biased nanoscale
diffusive superconductor/ferromagnet/superconductor junction when the magnetization texture is nonuniform.
Specifically, we incorporate the presence of a Bloch/Neel domain walls and conical ferromagnetism, including
the role of spin-active interfaces. The superconducting leads are assumed to be of the conventional s-wave
type. In particular, we investigate how the 0-� transition is influenced by the inhomogeneous magnetization
texture and focus on the particular case where the charge current vanishes while the spin current is nonzero. In
the case of a Bloch/Neel domain wall, the spin current can be seen only for one component of the spin
polarization, whereas in the case of conical ferromagnetism the spin current has the three components. This is
in contrast to a scenario with a homogeneous exchange field, where the spin current vanishes completely. We
explain all of these results in terms of the interplay between the triplet anomalous Green’s function induced in
the ferromagnetic region and the local direction of the magnetization vector in the ferromagnet. Interestingly,
we find that the spin current exhibits discontinuous jumps at the 0-� transition points of the critical charge
current. This is seen both in the presence of a domain wall and for conical ferromagnetism. We explain this
result in terms of the different symmetry obeyed by the current-phase relation when comparing the charge
and spin currents. Specifically, we find that whereas the charge current obeys the well-known relation
Ic���=−Ic�−��, the spin current satisfies Is���= Is�−��, where � is the superconducting phase difference.
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I. INTRODUCTION

Because of the interesting phenomena that
superconductor/ferromagnet/superconductor �S/F/S� struc-
tures exhibit, including their potential applications in
spintronics1,2 and quantum computing,3–6 this field of re-
search is presently studied extensively.6,7 Usual electronic
devices are based on the properties of flowing electrons
through circuits, whereas spintronic devices are based on di-
rection and number of flowing spins. In many spintronics
devices, such as magnetic tunnelling junctions, spin-
polarized currents are generated when an imbalance between
spin-up and spin-down carriers occurs. This imbalance can
arise, e.g., by using magnetic materials or applying a mag-
netic field. The discovery of the giant magnetoresistance
effect8 today forms the basis of the leading technology for
information storage by magnetic disk drives. Spin coupling
and its advantageous high speeds at very low powers9 of
these devices promise applications for logic and storage
applications.10–12

The possibility of a � state in a S/F/S systems was pre-
dicted theoretically in Refs. 13 and 14 and has been observed
experimentally.15 Near such a transition point, the junction
ground-state energy has two minima versus � at �=0 and �.
The coexistence of stable and metastable 0 and � states in
the transition zone can produce two flux peaks for one exter-
nal quantum flux in superconducting quantum interference
device like geometry, and renders the system a qubit.16 The
characteristic length of the ferromagnetic layer where the
first 0-� transition occurs is on the order of the magnetic
coherence length �F. In the dirty limit, that is achievable in

most of the experimentally studied S/F/S structures, �F is
given by �D /h, where D denotes the diffusion constant and
h is the magnitude of ferromagnetic exchange field. There-
fore, the experimental observation of such 0-� transitions in
nanoscale devices requires a low exchange energy h. Such
conditions were achieved using weak ferromagnetic CuNi or
PdNi alloys, where the critical charge-current exhibited 0-�
transitions as a function of the ferromagnet thickness and
temperature.15,17–19 The consequence of the exchange split-
ting at the Fermi level20 is that the Cooper pairs wave func-
tion shows damped oscillations in the ferromagnet, resulting
in the appearance of the well-known � state in S/F/S
systems.13 In contrast to the usual 0 state in superconductor-
normal metal-superconductor junctions, the phase shift equal
to � across the junction in the ground state reverses the
direction of the supercurrent,15 and considerably changes the
density of states �DOS� in the F metal.17 The � states can
also be observed in nonmagnetic junctions of high-Tc
superconductors21 and in nonequilibrium nanoscale super-
conducting structures.22

In the ballistic limit, the transport properties of a S/F/S
junction can be understood on a microscopic level in terms
of Andreev bound states.23 The 0-� transition is then due to
the spin dependence of the Andreev bound states.24 Because
of the averaging of the quasiclassical Green’s function25 over
momentum directions, the relevant equations simplify in the
dirty transport regime. This averaging of Green’s function
can be understood by noting that in the presence of impuri-
ties and scattering centers, the direction of motion of elec-
trons are random and physical quantities should be averaged
over all directions. This averaging is valid as long as the
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mean free path of the diffusive layer is much smaller than the
other length scales in the system: the superconducting coher-
ence length �S=�D /�0 and the decay length of Cooper pairs
inside the ferromagnet �F, where �0 is the superconducting
order parameter. The charge-current Ic��� and the local DOS
are two principle quantities that are strongly influenced by
the proximity effect. These two quantities were studied for
various geometries by using both quasiclassical Green’s
functions and the Bogoliubov de Gennes formalism in the
clean and dirty limits in several works, e.g., Refs. 26–38.
The spin dynamics of ferromagnetic Josephson junctions
have also been studied in Refs. 39–41.

Up to now, the majority of works studying S/F/S junctions
have considered a homogeneous exchange field in the ferro-
magnet, including half-metallic ferromagnets.42–46 In the
presence of inhomogeneous magnetization textures, several
new effects have been predicted in the literature including
the possibility of a long-range triplet component. Such an
inhomogeneous magnetization texture may be created artifi-
cially by setting up several layers of ferromagnets with mis-
aligned magnetizations.47–52 Alternatively, inhomogeneous
magnetization may arise naturally in the presence of domain
walls or nontrivial patterns for the local ferromagnetic mo-
ment. An example of the latter is the conical ferromagnet Ho.
Very recently, two theoretical studies have predicted qualita-
tively new effects in S/F and S/F/S hybrid structures where F
is a conical ferromagnet.53,54 Due to the inhomogeneous na-
ture of the magnetization in Ho, the spin properties of the
proximity-induced superconducting correlations are expected
to undergo a qualitative change compared to the case of ho-
mogeneous ferromagnetism. Such changes may also be ex-
pected in the domain-wall case. A more realistic modeling of
hybrid structures involving superconductors and ferromag-
nets demands that such nontrivial magnetization textures and
also the spin-dependent properties of the interface
regions55,56 are taken into account seriously. It was recently
shown that the latter may induce qualitatively new features
in the local DOS of S/F layers57 and S/N layers with mag-
netic interfaces.58

Another consequence of inhomogeneous magnetization,
be it in the form of multiple misaligned layers or intrinsic
nonuniformity within a single ferromagnetic layer, is that the
Josephson current should become spin polarized. This has
been noted by several authors in the context of superconduct-
ors coexisting with helimagnetic or spiral magnetic order59,60

as well as ferromagnetic superconductors.61,62 However, the
spin polarization of the Josephson current has not been stud-
ied in the arguably simplest case of a single ferromagnetic
layer with inhomogeneous magnetization contacted by two
conventional s-wave superconductors.

To this end, we study in this paper a model for an S/F/S
junction where both inhomogeneous magnetization and spin-
active interfaces are incorporated. We proceed to solve the
problem numerically using the established formalism of qua-
siclassical theory in a diffusive superconducting system.63

More specifically, we will investigate variations in spin and
charge currents versus changing of the thickness of F layer
dF for a hybrid S/F/S structure with s-wave superconductors.
Whereas previous literature has focused on the charge cur-
rent in such structures, we here pay particular attention to the

spin-polarization properties of the supercurrent. We find that
a spin current flows through the junction whenever the mag-
netization is inhomogeneous, and that it features discontinu-
ous jumps whenever the junction undergoes a 0-� transition.
We compare these variations for three types of magnetization
textures, i.e., homogeneous, domain wall, and a conical ex-
change field. We also show that for certain values of dF, the
critical charge current vanishes whereas a pure spin current
flows through the system. Moreover, we demonstrate how it
is possible to obtain a pure spin current by tuning the phase
difference between the superconductors.

II. THEORY

To investigate the behavior of the ferromagnetic Joseph-
son junction, we employ a full numerical solution of the
quasiclassical equations of superconductivity25 in the diffu-
sive limit,63 which allows us to access the full proximity
effect64 regime. We also take into account the spin-dependent
phase shifts �spin-DIPS� microscopically65 that are present at
the superconductor/ferromagnet interfaces. For the purpose
of stable and efficient numerical calculations, it is convenient
to employ the Ricatti parametrization of the Green’s function
as follows:66–68

ĝ = �N� �1� − �� ��̃ � 2N� ��

2N�̃ ��̃ N�̃ �− 1� + ��̃ �� �
� . �1�

Here, ĝ2= 1̂ since

N� = �1� + �� ��̃ �−1, N�̃ = �1� + ��̃ �� �−1. �2�

We use ¯� for 2�2 matrices and ¯̂ for 4�4 matrices. In
order to calculate the Green’s function ĝ, we need to solve
the Usadel equation63 with appropriate boundary conditions
at x=−dF /2 and dF /2. We introduce the superconducting co-
herence length as �S=�DS /�0. Following the notation of
Ref. 53, the Usadel equation reads

D � �ĝ � ĝ� + i���̂3 + diag�h · �� ,�h · �� �T�, ĝ� = 0, �3�

and we employ the following realistic boundary conditions
for all our computations in this paper:55

2	dFĝ � ĝ = �ĝBCS���, ĝ� + i�GS/GT��diag�
3� ,
3� �, ĝ� �4�

at x=−dF /2. Here, �� �
�x and we defined 	=RB /RF as the

ratio between the resistance of the barrier region and the
resistance in the ferromagnetic film. The barrier conductance
is given by GT, whereas the parameter GS describes the spin-
DIPS taking place at the F side of the interface where the
magnetization is assumed to parallel to the z axis. The
boundary condition at x=dF /2 is obtained by letting

GS→ �−G̃S� and ĝBCS���→ �−ĝBCS�−��� in Eq. �4�, where

�� BCS��� = i
2� s/�1 + c�ei�/2,

��̃ BCS��� = �� BCS���e−i�. �5�

Above, G̃S is allowed to be different from GS in general. For
instance, if the exchange field has opposite direction at the
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two interfaces due to the presence of a domain wall, one

finds G̃S=−GS. The total superconducting phase difference is
�, and we have defined s=sinh���, c=cosh��� with
�=atanh��0 /�� using �0 as the superconducting gap. Note
that we use the bulk solution in the superconducting region,
which is a good approximation when assuming that the su-
perconducting region is much less disordered than the ferro-
magnet and when the interface transparency is small, as con-
sidered here. We use units such that �=kB=1.

The values of GS and GT may be calculated explicitly
from a microscopic model, which allows one to characterize
the transmission 	tn,

j 
 and reflection amplitudes 	rn,
j 
 on the

j� 	S ,F
 side. Under the assumption of tunnel contacts and a
weak ferromagnet, one obtains with a Dirac-type barrier
model55,56,65

GT = GQ�
n

Tn, GS = 2GQ�
n
��n

F −
4
n

S

Tn
� �6�

upon defining Tn=��tn,
S �2 and

�n
F = Im	rn,↑

F �rn,↓
F ��
, 
n

S = Im	tn,↑
S �tn,↓

S ��
 . �7�

For simplicity, we assume that the interface is characterized
by N identical scattering channels. Omitting the subscript
“n,” the scattering coefficients are obtained as

r
F = �k

F − k
S − ik

SZ�/D,

t
S = 2�k

Sk
F/D �8�

with the definitions D=k
S +k

F+ ik
SZ and

k
S = �2mS�S, k

F = �2mF��F + h� . �9�

Here, Z=Z0+ZS is the spin-dependent barrier potential.
Defining the polarization P=h /�F in the ferromagnet and the
polarization �=ZS /Z0 for the barrier, we will set P=�.

In this paper we will consider three types of inhomoge-
neous magnetic textures: Bloch, Neel and, a conical struc-
ture. These structures are all different from a homogenous
magnetic texture. The first two types of magnetic textures are
assumed to be located at the center of the F layer. The Bloch
model is demonstrated by h=h�cos �ŷ+sin �ẑ� and its struc-
ture is shown in Fig. 1. Similarly, the Neel model reads
h=h�cos �x̂+sin �ẑ� where we defined � as follows:68

� = − arctan�x/dW� . �10�

Here, dW is the width of domain wall and we assumed that
the center of F layer is located at the origin, i.e., x=0 as
shown in Fig. 1.

For the conical case, we adopt a model where the mag-
netic moment rotates on the surface of a cone with defined
apex angle � and turning angle �. This structure is shown in
Fig. 1 �� and � will determine the kind of material in use�. If
we assume that the distances of interatomic layers are a,69

the spiral variation in the exchange field can be written as

h = h�cos �x̂ + sin ��sin��x/a�ŷ + cos��x/a�ẑ�� . �11�

To characterize the transport properties of the system, we
define the normalized charge and spin currents according to

Ic

Ic,0
= �

0

�

d�̃ Tr��̂3�ǧ
� ǧ

� x̃
�K� �12�

and

Is
z

Is,0
= �

0

�

d�̃ Tr��̂3
̂3�ǧ
� ǧ

� x̃
�K� , �13�

respectively, where �̃=� /�0 and x̃=x /dF. Here Ic and Is
z are

the charge and the z component of the spin current flowing in
the x̂ direction, respectively. The normalization constants are

Ic,0 =
N0eD�0

8dF
, Is,0 =

Ic,0

2e
, �14�

where N0 is the normal-state DOS per spin. In general, the
spin current for other components of spin polarization
j� 	x ,y ,z
 is given as

Is
j

Is,0
= �

0

�

d�̃ Tr��̂3�̂ j�ǧ
� ǧ

� x̃
�K�, �̂ j = �
 j� 0�

0� 
 j�
� � . �15�

Above, �î, 
î, and 
i� are Pauli matrices that are defined in
the Appendix C and the reader may consult Appendices A
and B for the derivation of the expression for Is

j / Is,0. Under
the assumption of an equilibrium situation, the Keldysh
block of Green’s function reads

ĝK = �ĝR − ĝA�tanh���/2� , �16�

where ĝR and ĝA=−��3̂ĝR�3̂�† are the retarded and advanced
blocks of ǧ, respectively, and �=1 /T is inverse temperature.

FIG. 1. �Color online� The S/F/S junction �i� with Bloch domain
wall of ferromagnet and �ii� with conical type of ferromagnet. The
magnetization texture for the Neel wall is obtained by replacing the
x component of the magnetization with an y component in case �i�.
The blue arrows in the central region show the magnetic moments
in F layer. The magnetic moment for Bloch/Neel domain wall has
two components and for conical type has three components.
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III. RESULTS AND DISCUSSION

We now present our main results of this paper, namely, a
study of how the critical currents depend on the thickness dF
of the junction in the presence of homogeneous and inhomo-
geneous exchange field, and spin-active interfaces. In order
to focus on a realistic experimental setup, we choose the
junction parameters as follows. For a weak, diffusive ferro-
magnetic alloy such as PdxNi1−x, the exchange field h /�0 is
tunable by means of the doping level x to take values in the
range millielectron volt to tens of millielectron volt. Here,
we will fix h /�0=15, which typically places the exchange
field h in the range 15–25 meV. The thickness dF of the
junction is allowed to vary in the range dF /�S� �0.5,1.2�,
which is equivalent to 9–21.6 nm for a superconducting co-
herence length of �S=18 nm as can be obtained for, e.g., Nb.
This range of layer thicknesses dF is experimentally
feasible.19 The ratio of GS /GT may be calculated according
to the microscopic expressions given in the previous section.
We choose �F=1 eV and �S=10 eV for the Fermi level in
the ferromagnet and superconductor, respectively, and con-
sider a relatively low barrier transparency of Z0=3. The elec-
tron mass mF and mS in both the F and S regions is taken to
be the bare one ��0.5 MeV�. Any change in effective mass
translates into an effective barrier resistance due to the
Fermi-wave-vector mismatch, which thus is captured by the
parameter Z0. The interface region is assumed to exhibit a
much higher electrical resistance than in the bulk of the fer-
romagnet, and we set 	=RB /RF=4. For more stability in our
computations we used the Ricatti parametrization and also
inserted a small imaginary part �=5�10−3�0 in the quasi-
particle energy �, effectively modeling inelastic scattering. A
considerable amount of CPU time was put into the calcula-
tions of the current, as we solved for a fine mesh of both
quasiparticle energies � and phase differences � for each
value of the width dF. As will be discussed in detail below,
we find that for S/F/S structures with spin-singlet s-wave
superconducting leads, a spin current exists only for domain-
wall structures and conical type of the ferromagnet layer,
whereas it vanishes completely in the case of a homogeneous
exchange field. Both the charge and spin currents are evalu-
ated in the middle of the F region, x=0. The charge current is
conserved throughout the system, and its magnitude is thus
independent of x. The spin current, on the other hand, is not
conserved and, in fact, suffers a depletion close to the S/F
interfaces and vanishes completely in the superconducting
regions. The critical charge current is given by
Icc=max�	Ic���
, and the phase giving the critical current
may be denoted �c. We define the critical spin current as
Ics= Is��c�, which means that we are effectively considering
the spin polarization of the critical charge current, which
should be the most sensible choice physically in a current-
biased scenario. Note that this is different from the maximum
value of the spin current as a function of �.

A. Critical currents vs thickness dF for homogeneous
exchange field

First, we consider how the charge and spin currents are
influenced by changing the thickness of F layer dF in the

homogeneous magnetic texture case. We fix the temperature
at T /Tc=0.2, and use the microscopic expression for spin-
DIPS G� at the two boundaries. The result is shown in the
Fig. 2. The critical charge current in the region of dF from
0.5�S to 1.2�S vanishes at one point. This point is the first
0-� transition point. We found that, for all strengths of the
exchange field and spin-DIPS, the spin current Is is zero.
Unlike the case of spin-triplet superconductors, we cannot
see any spin current even for x̂ and ŷ directions of spin
polarization.70,71 In fact, one can confirm this finding analyti-
cally for all components of spin polarization at least for lin-
earized Usadel equation and transparent boundaries. The rea-
son for the vanishing spin current will become clear from the
discussion in the following section, when noting that only
the Sz=0 odd-frequency triplet and even-frequency singlet
components are induced by the proximity effect in the ferro-
magnetic region.

B. Critical currents vs thickness dF for Bloch and Néel
domain walls

We now turn our attention to the first example of a non-
trivial magnetization texture in the ferromagnet, namely, the
scenario of a Bloch or Neel domain wall. We use the same
values for h and T as in the previous section, and set the
domain-wall width dW to dW /dF=0.5 and assume that it is
centered in the ferromagnet. Although the domain-wall struc-
ture dictates that the magnetization is not fully directed along
the z axis at the interfaces, we have verified numerically that
the influence of the spin-DIPS parameter GS /GT is negligible
�typically around 0.005� for our choice of parameters, such
that we still can use the boundary conditions in Sec. II.

The results of the variation in the normalized critical spin
and charge currents vs dF /�S are shown in the Fig. 3, con-
sidering here a Bloch wall texture. Contrary to the homoge-
neous case considered in the previous section, we now see
that a finite spin current flows through the system. For this
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FIG. 2. �Color online� The variation in the normalized critical
charge current versus the thickness of a homogeneous F layer. The
inset panel zooms in on the behavior near the 0-� transition. As
long as the exchange field is constant, we find that the spin current
Is vanishes.
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type of magnetization texture, we note that the spin current
only exists for one component of the spin polarization: the x̂
component. Only one component of the spin current would
be present also in the Neel domain-wall case, as we shall
explain below. The spin current features a discontinuous
jump at the same value of the thickness where the charge
current undergoes a 0-� transition, namely, dF /�S�0.6. For
this value of thickness the spin current has a rapid variation.
We have checked numerically with a very high resolution of
dF �a step of 5�10−4 for dF /�S� that this result does not
pertain to noise or any error. For this type of magnetization
texture, we also note that a spin current only exists for one
component of the spin polarization: the x̂ component. We
will explain the reason for the presence of such jumps in the
spin current in Sec. III D.

We now explain why only one component of the spin
polarization is present both in the Bloch and Neel domain-
wall cases. In order to understand the reason for this, it is
instructive to consider the interplay between the triplet
anomalous Green’s function f, given by

f = � f↓ − f↑
2

,−
i�f↓ + f↑�

2
,
f↑↓ + f↓↑

2
� �17�

and the local direction of the exchange field h. The triplet
anomalous Green’s function vector is related to the electron
field operators � in a real-time picture by

− i�T���x1����x2�� = �i�f�x1,x2� · �� �� y���, �18�

where T denotes the time-ordering operator and xj = �r j , tj�.
The energy representation of the anomalous Green’s function
is obtained via a Fourier transformation. In S/F proximity
structures, f tends to align as much as possible with h. For a
homogeneous exchange field h in the z direction, one thus

obtains that only the Sz=0 opposite-spin pairing triplet com-
ponent f t= fz is present, as is well known. Consider now the
Bloch domain-wall case. The f vector then contains only y
and z components. Now, the spin expectation value of the
Cooper pair is provided by

�S� � i�f � f�� �19�

and we immediately infer that only a spin polarization in the
x direction will be present. A similar line of reasoning for the
Neel domain-wall case leads to the result that only a spin
polarization in the y direction is present. Since we are evalu-
ating the spin current in the middle of the F region, the z
component of the local exchange field is absent there. In that
case, �S� should equal to zero according to our argument
above. The reason for why a finite spin current is neverthe-
less obtained must be attributed to a lag between the f and h
vectors, such that they do not follow each other exactly. One
would expect that for a slower variation in the local ex-
change field, the lag would decrease.

C. Critical currents vs thickness dF for conical type of
magnetization texture

Finally, we turn our attention to the conical model for
magnetization, relevant to Ho. For simplicity, we set GS=0 at
the two boundaries at −dF /2 and dF /2. Just as in the domain-
wall case, we have checked explicitly that the influence of
GS can be neglected for our choice of parameters. The
distance between the atomic layers is equal to 0.02dF,
�=4� /9, and rotating angle �=� /6 per interatomic layer.
These values of a, �, and � are chosen based on the actual
lattice parameters of Ho. The result of the investigation of
how the critical spin and charge currents vary as a function
of dF /�S is shown in the Fig. 4. In this case, we see a quali-
tatively new behavior for the charge current as compared to
the Secs. III A and III B where we treated a homogeneous
exchange field and a domain-wall ferromagnet, respectively.
In Fig. 4, one observes a superimposed pattern of fast oscil-
lations on top of the usual 0-� oscillations, which are slower.
This is in agreement with the very recent work by Halász
et al.,54 who also reported the generation of rapid oscillations
on top of the conventional 0-� transitions of the current in
the weak-proximity effect regime. These faster oscillations
pertain to the inhomogeneous magnetization texture consid-
ered here, although they are not seen in the domain-wall
case. This fact indicates that they are sensitive to the precise
form of the magnetization structure in the ferromagnet, and
that they do not appear simply as a result of a general inho-
mogeneity.

As can be seen in the Fig. 4, the critical-charge current
has five local minima, out of which three are 0-� transition
points. In Fig. 4, the first dotted vertical line indictates a
minima which is irrelevant to a 0-� transition, whereas the
three following dotted lines indicate minima which corre-
spond to such transitions. The last local minima is located
near dF /�S=1.2 and is not indicated by a dotted line in Fig.
4. This is in contrast to the homogeneous and domain-wall
case, where only one 0-� transition point is seen in the range
of dF considered here. As for the spin current, the behavior is
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FIG. 3. �Color online� The variations in normalized critical spin
and charge currents vs increasing the thickness dF of F layer with a
Bloch domain-wall structure.
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similar to the Bloch wall structure, with a rapid variation at
the transition point. As mentioned previously, we have inves-
tigated these discontinuous jumps of the spin current with a

very high resolution for dF to ensure that these do not stem
from numerical errors or noise. We now proceed to an expla-
nation for this effect.

D. Origin of the discontinuous jumps in the spin current

In order to understand the mechanism behind the discon-
tinuous jumps of the spin current near the 0-� transition of
the junction, we revert briefly to the original definition of the
critical spin current. It is defined as Is��c�, where �c is the
value of the superconducting phase difference which gives
the maximum �absolute� value of the charge current. In ef-
fect, the critical spin current is the spin polarization of the
critical charge current, which is distinct from the maximum
value of the spin current. We now consider in detail the
current-phase relation for both charge and spin transport near
the transition point located at dF /�S�0.772 �see Fig. 4�. The
result for the current-phase relation is shown in Fig. 5, where
we consider several values of dF near the transition point.
From bottom to top, they range from dF /�S=0.7655 to
0.7725 in steps of 1�10−3. A key point is that we have
verified numerically that the charge current is antisymmetric
with respect to �=� whereas the spin current is symmetric
around this value. More specifically, whereas

Ic��� = − Ic�− �� �20�

we find numerically that the spin current satisfies
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Is��� = Is�− �� . �21�

This is consistent with the finding of Ref. 70 where transport
between spin-triplet superconductors has been investigated.
Physically, the relation �21� may be understood by consider-
ing the time-reversal invariance of the spin current. As a
result, it suffices to restrict our attention to the range
�� �0,��. Next, we note that the charge current is nearly
sinusoidal to begin with �bottom curves of Fig. 5�. Upon
increasing dF, and thus approaching the transition point,
higher harmonics in the current-phase relation become more
protrudent for the charge current. However, the spin current
remains virtually unafffected by an increase in dF, and we
plot the result only for dF /�S=0.7725. Upon increasing dF,
the critical phase �c moves away from � /2 to lower values
due to the presence of higher harmonics in the current-phase
relation. At the transition point, the phase jumps in a discon-
tinuous manner to �c�� /2 �dotted arrow in Fig. 5�. Now,
the charge current has a similar magnitude �in absolute
value� for this new value of �c. The spin current, on the other
hand, has a different symmetry with respect to � as seen in
Fig. 5 and varies less rapidly with dF. Therefore, the spin
polarization of the current makes a discontinuous jump at the
transition point, leading to the behavior shown in Fig. 4.

E. Experimental consequences of the spin-Josephson
current

A direct experimental observation of a spin current is
presently a considerable challenge. Nevertheless, there are
indirect ways to identify the presence of spin-polarized trans-
port in a system. In semiconducting systems, this has previ-
ously been achieved by measuring the spin accumulation at
the edge of a normal metal wire with optical techniques.72,73

Another possibility is to consider the induced magnetization
dynamics which occurs when a spin current interacts with
the ferromagnetic order parameter. In general, the transverse
component of a spin current relative to the magnetization
orientation tends to be absorbed by the magnetic order pa-
rameter �see, e.g., Ref. 74 for a detailed review�. This may,
for instance, cause an experimentally detectable precession
of the magnetic moment around its original axis due to the
added angular momentum from the spin current. In this way,
a spin-Josephson current could be indirectly probed by
studying the magnetization dynamics induced in an inhomo-
geneous ferromagnet by current biasing the entire Josephson
junction.

IV. SUMMARY

In summary, we have considered the transport of charge
and spin in a nanoscale S/F/S Josephson junction when the
magnetization texture is inhomogeneous in the ferromagnetic
layer. More specifically, we have investigated how charge
and spin-Josephson currents are affected by the presence of
Bloch/Neel domain walls and conical ferromagnetism, in-
cluding also the spin-active properties of the interfaces. We
find that a spin current flows through the junction whenever
the magnetization is inhomogeneous, and that it features dis-
continuous jumps whenever the junction undergoes a 0-�

transition. In the case of a Bloch/Neel domain wall, the spin
current can be seen only for one component of the spin po-
larization �the component perpendicular to both the local di-
rection of the exchange field and that of its derivative�,
whereas in the case of conical ferromagnetism the spin cur-
rent has three components. For a homogeneous exchange
field, the spin current vanishes. We explain the polarization
properties of the spin current by considering interplay be-
tween the triplet anomalous Green’s functions induced in the
ferromagnetic region and the local direction of the magneti-
zation vector in the ferromagnet. Moreover, we show how
the discontinuous jumps in the spin-current stem from the
different symmetries for the current-phase relation when
comparing the charge and spin currents. While the charge
current obeys the well-known relation Ic���=−Ic�−��, the
spin current satisfies Is���= Is�−��, where � is the supercon-
ducting phase difference. The spin-Josephson effect is an in-
trinsic feature pertaining to the inhomogeneous magnetiza-
tion texture and could, in principle, be probed by means of
spin accumulation or magnetization dynamics effects in a
current-biased S/F/S Josephson junction.
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APPENDIX A: USEFUL RELATIONS FOR THE GREEN’S
FUNCTION

By introducing the auxiliary quantities

�xN� = − N� D� N� , �xN�̃ = − N�̃ D�̃ N�̃ , �A1�

where we have defined

D� = ��x�� ���̃ + �� ��x��̃ �, D�̃ = ��x��̃ ��� + ��̃ ��x�� � , �A2�

we find that the matrix derivative of the Green’s function
�xĝ

R has the following components:

��xĝ
R�11 = − D� N� − �1� − �� ��̃ �N� D� N� ,

��xĝ
R�12 = 2��x�� �N�̃ − 2��N�̃ D�̃ N�̃ ,

��xĝ
R�21 = 2��x��̃ �N� − 2��̃N� D� N� ,

��xĝ
R�22 = D�̃ N�̃ + �1� − ��̃ �� �N�̃ D�̃ N�̃ . �A3�

The indices above refer to particle-hole space, and each of
the above elements is thus a 2�2 matrix in spin space.

APPENDIX B: QUASICLASSICAL EQUATION FOR THE
SPIN CURRENT

We here show how the matrix structure in the analytical
expression �15� for the spin current is obtained in the quasi-
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classical approximation. The starting point is the quantum-
mechanical expression for the expectation value of the spin
current

�jS�r�� =
1

2m
�Im	�†�r��r diag��,�����r�
� �B1�

with a fermion operator basis � given as

�†�r� = ��↑
†�r�,�↓

†�r�,�↑�r�,�↓�r�� . �B2�

Above, � is the Pauli matrix vector. It should be noted that
the spin current jS is a tensor since it has a flow direction in
real space in addition to a polarization in spin space. For
clarity, we consider in what follows the 2 component cor-
responding to the polarization in the ŷ direction, as an ex-
ample. We then get from Eq. �B1� �using that Im	iz
=Re	z

for a complex number z�

�jS
y�r�� =

1

2m
Re	− ��↑

†�r��r�↓�r�� + ��↓
†�r��r�↑�r��

+ ��↑�r��r�↓
†�r�� − ��↓�r��r�↑

†�r��


=
1

4m
lim
r→r�

��r − �r�����↑
†�r��↓�r��� − ��↓

†�r��↑�r���

+ ��↓�r��↑
†�r��� − ��↑�r��↓

†�r���� . �B3�

Using the notation of Ref. 75, we define the following rep-
resentation for the Keldysh Green’s function:

�ĜK�r,r���mn = − i�
j

��̂3�mj����r� j,�
†�r��n�−� . �B4�

It then follows from anticommutation that, e.g.:

��↑
†�r��↓�r��� =

1

2
��↑

†�r��↓�r��� +
1

2
��↑

†�r��↓�r���

= −
1

2
��↓�r���↑

†�r�� +
1

2
��↑

†�r��↓�r��� .

�B5�

In this way, we can rewrite the last lines of Eq. �B3� as

�jS
y�r�� =

1

8m
lim
r→r�

��r − �r��	i�Ĝ
K�r,r���21 − i�ĜK�r,r���12

− i�ĜK�r,r���34 + i�ĜK�r,r���43


= −
1

8m
lim
r→r�

��r − �r��Tr	�̂3 � diag�
2� ,
2�
��

� ĜK�r,r��
 . �B6�

For the x and z components, one replaces 
2� with 
1� and 
3� ,
respectively.

APPENDIX C: PAULI MATRICES

The Pauli matrices that are used in this paper are


1� = �0 1

1 0
�, 
2� = �0 − i

i 0
�, 
3� = �1 0

0 − 1
� ,

1� = �1 0

0 1
�, 1̂ = �1� 0�

0� 1�
�, 
̂i = �
i� 0�

0� 
i�
� ,

�̂1 = � 0� 
1�

1� 0�

�, �̂2 = � 0� − i
1�
i
1� 0�

�, �̂3 = �1� 0�

0� − 1�
� .
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